Improving Koopman-Based Sequential Multifactor Disentanglement with Single Static Mode and Latent Space Refinement

Amos Haviv Hason

Supervised by **Dr. Omri Azencot**

Thesis Dissertation for the Degree of **Master of Science** at the Department of **Computer Science**

Ben-Gurion University of the Negev

December 2024

Introduction

Representation Learning

- Focuses on learning useful features directly from raw data.
- Aims to enhance downstream tasks like classification or prediction.
- Creates a compact, meaningful latent space representation.

Sequential Disentanglement

- Disentangled representation:
 - Features map to distinct, interpretable factors (e.g., shape, color, dynamics).
 - Static and dynamic factorization.
 - Aids generalization in machine learning tasks.
- Challenges:
 - Limited labeled data.
 - Need for unsupervised solutions.
- Structured Koopman Disentanglement (SKD) model:
 - Autoencoder architecture.
 - Uses Koopman theory and dynamic mode decomposition (DMD) in bottleneck.

Our Contributions

- Identified and addressed issues in SKD implementation.
- Introduced Single Static Mode Structured Koopman Disentanglement (SSM-SKD) model.
- Proposed a greedy latent space exploration algorithm.
- Evaluated SSM-SKD on four datasets and compared to SKD.
- Suggested a new standard for comprehensive environment reporting to improve reproducibility.

Background

Koopman Theory and DMD

- Koopman theory:
 - Provides a linear representation of nonlinear dynamical systems through the Koopman operator.
 - Operates in an infinite-dimensional space of observables, mapping system measurements forward in time.
 - Does not linearize the system but transforms its dynamics into a linear framework for analysis.
 - Focuses on the spectral properties of the operator, including eigendecomposition, to analyze long-term behavior.

Koopman Theory and DMD

• DMD:

- A numerical algorithm that approximates the Koopman operator from data.
- Analyzes snapshots of a system over time to compute a finitedimensional representation.
- Identifies dominant dynamic modes and their eigenvalues (frequencies, growth/decay rates).
- Initially developed for fluid mechanics, it is widely used for high-dimensional, time-dependent data.

Koopman Theory and DMD

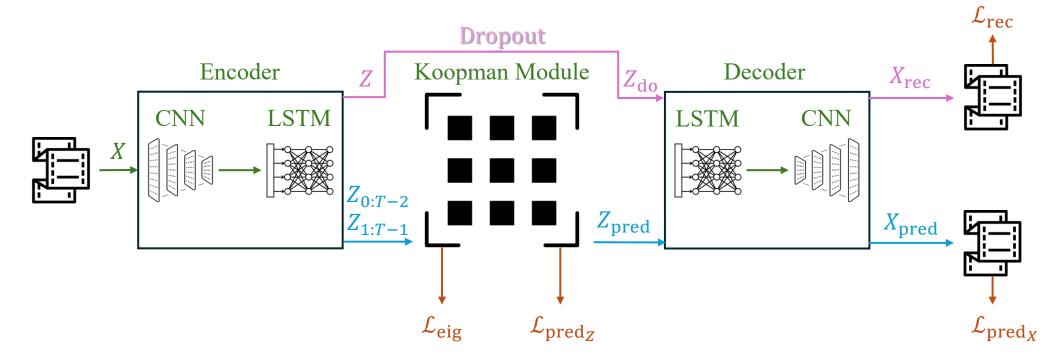
Relationship:

- Koopman theory is a theoretical framework for understanding nonlinear dynamics via linear operators.
- DMD is a practical application that approximates the Koopman operator from finite, observable data.

Applications:

- Fluid mechanics, video processing, time-series analysis, and system identification.
- Enable higher-level insights on the behavior of dynamical systems.

SKD



^{*} Icons created by iconsmind.com, Oleksandr Panasovskyi, Lucas Rathgeb, and ahmadwil from Noun Project

SKD

$$\mathcal{L}_{ ext{pred}_Z} = ext{MSE}(Z_{ ext{pred}}, Z)$$
 $\mathcal{L}_{ ext{pred}_X} = ext{MSE}(X_{ ext{pred}}, X)$
 $\mathcal{L}_{ ext{rec}} = ext{MSE}(X_{ ext{rec}}, X)$

$$\mathcal{L}_{\text{eig}} = \frac{1}{|S|} \sum_{\lambda \in S} |\lambda - 1|^2 + \frac{1}{|D|} \sum_{\lambda \in D} \begin{cases} \text{Re}(\lambda), & \text{if } \text{Re}(\lambda) > \alpha \\ 0, & \text{otherwise} \end{cases}$$

$$\mathcal{L} = w_{\text{pred}_Z} \mathcal{L}_{\text{pred}_Z} + w_{\text{pred}_X} \mathcal{L}_{\text{pred}_X} + w_{\text{rec}} \mathcal{L}_{\text{rec}} + w_{\text{eig}} \mathcal{L}_{\text{eig}}$$

Reimplementing SKD

Motivation:

- Reproducing SKD results was hindered by multiple issues in the original implementation.
- Dimension mismatch in architecture:
 - Original implementation misused two dimension hyperparameters.
 - Fixed by aligning code with Table 5 of the SKD paper.
- Inconsistent size of subset S across batches:
 - Usage of function get_unique_num() for delimiting static and dynamic eigenvalues caused spectral loss instability.
 - Resolved by consistently considering s eigenvalues closest to 1 as static-related, regardless of conjugate pairing.
- NaN gradient issues:
 - Training often failed (>= 40% of runs) due to NaN values in gradients.
 - Addressed by applying gradient clipping for numerical stability.

Reimplementing SKD

- Precision in eigenvalue computations:
 - Original implementation used lower precision operations.
 - Upgraded to float64 for Koopman module and spectral loss calculation to improve numerical stability.
- Learning rate scheduling:
 - Original lacked a learning rate scheduler, leading to suboptimal convergence.
 - Added a scheduler to decay learning rate on plateau.
- Hyperparameter discrepancies (Sprites dataset):
 - Reported hyperparameters did not reproduce results.
 - Adjusted.
- Impact:
 - These corrections enhance SKD's reproducibility, stability, and convergence, laying a robust foundation for further experimentation.

Single Static Mode Structured Koopman Disentanglement (SSM-SKD)

Motivation

- In SKD, static modes are constrained to have eigenvalues ~1.
- SSM-SKD reduces all static modes to a single static mode with an eigenvalue ~1.
- Potential benefits:
 - Allows tighter constraints on static modes.
 - Current deep learning software platforms do not support backpropagation through eigenvectors due to numerical difficulties.
 - It is possible to approximate an eigenvector related to a real eigenvalue using a backpropagation-friendly algorithm.
 - Simplifies static mode representation and static disentanglement.
 - Orthogonality in coordinates.

Architecture

- With s = 1 (one static eigenvector), SKD faces the **shortcut problem** (disentanglement-reconstruction tradeoff):
 - Low K (Koopman operator size) values ($K \le 8$): Poor reconstruction performance.
 - High *K* values: Poor static-dynamic disentanglement as the model encodes static information in other modes (they have more capacity).
- Instance-wise Koopman operator approximation:
 - Replace batch-level Koopman operator approximation with instance-level approximation.
 - Solve least squares problem for each instance.

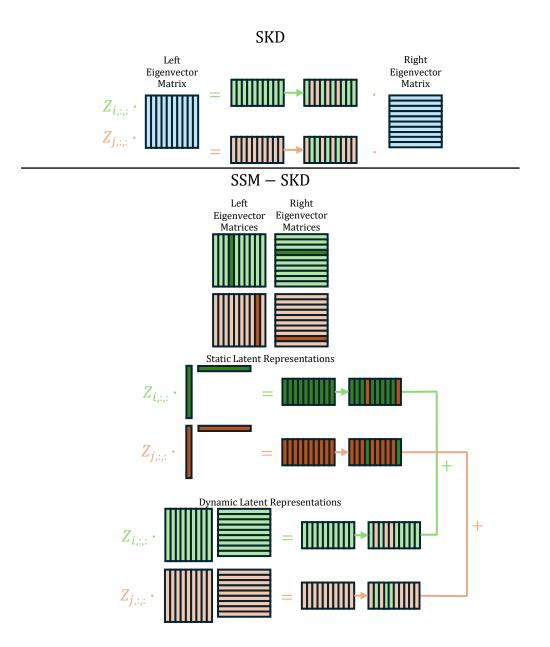
Attribute Swapping in SKD

- Latent space extraction:
 - SKD computes a latent space per batch.
 - Koopman latent representation for instance:
 - Zi × (desired eigenvector submatrix of the Koopman operator)
- Attribute swapping process:
 - Multiply latent matrices by eigenvector matrix.
 - Swap desired modes between instances in the resulting matrices.
 - Multiply swapped matrices by the inverse of the eigenvector matrix to obtain new latent matrices.
 - Decode the modified latent matrices for swapped outputs.

Attribute Swapping in SSM-SKD

- Instance-wise Koopman operator approximation:
 - Each instance has its own Koopman operator.
 - SKD's batch-based method is incompatible with SSM-SKD.
- New method:
 - Compute static latent representation:
 - Zi × (static mode submatrix of eigenvector matrix) × (submatrix of eigenvector inverse)
 - Compute dynamic latent representation similarly with dynamic modes.
 - Treat coordinates of static and dynamic representations as channels.
 - Swap desired channels between instances.
 - Sum static and dynamic representations, then decode.
- Lacks theoretical guarantees or justification.
 - Contrary to SKD's approach which is grounded on DMD.

Comparison



Latent Space Exploration

- Which static modes relate to each factor?
 - Partition of channels to factor sets.
- Train classifiers for static factors of the desired dataset.
- Sample instances from dataset and swap latent channels between them.
- SKD employs a brute-force search over the power set of static modes.
- We propose a greedy latent space exploration algorithm.
 - Swap all channels except a single channel.
 - Tie channel to the static factor for which accuracy is maximal.
 - We prove that for our coordinate-based approach, it yields an optimal solution regarding the **sum of factor accuracies**.
 - Does not minimize leakage between factors.
 - Leakage: Information about a factor being located in channels which are tied other factors.

Evaluation

Metrics

$$\begin{split} \mathcal{D}_{\text{sd}}(X) &= 1 - \frac{1}{2(|F_{\text{s}}| + |F_{\text{d}}|)} \Bigg(\sum_{f \in F_{\text{s}}} \bigg| \text{Acc}(\mathbb{C}_{f}(\text{StaticSampleSwap}(X)), \mathbb{C}_{f}(X)) - \frac{1}{|\mathcal{C}_{f}|} \bigg| + \\ & \sum_{f \in F_{\text{d}}} |\text{Acc}(\mathbb{C}_{f}(\text{StaticSampleSwap}(X)), \mathbb{C}_{f}(X)) - 1| + \\ & \sum_{f \in F_{\text{s}}} |\text{Acc}(\mathbb{C}_{f}(\text{DynamicSampleSwap}(X)), \mathbb{C}_{f}(X)) - 1| + \\ & \sum_{f \in F_{\text{d}}} \bigg| \text{Acc}(\mathbb{C}_{f}(\text{DynamicSampleSwap}(X)), \mathbb{C}_{f}(X)) - \frac{1}{|\mathcal{C}_{f}|} \bigg| \bigg) \end{split}$$

$$\mathcal{D}_{\mathrm{mf}}(X) = 1 - \frac{1}{|F_{\mathrm{s}}|(|F_{\mathrm{s}}| + |F_{\mathrm{d}}|)} \left(\sum_{f \in F_{\mathrm{s}}} \sum_{g \in F_{\mathrm{s}} \cup F_{\mathrm{d}}} \begin{cases} \left| \mathrm{Acc}(\mathbb{C}_{g}(\mathrm{FactorialSampleSwap}_{f}(X)), \mathbb{C}_{g}(X)) - 1 \right|, & \text{if } g = f \\ \left| \mathrm{Acc}(\mathbb{C}_{g}(\mathrm{FactorialSampleSwap}_{f}(X)), \mathbb{C}_{g}(X)) - \frac{1}{|\mathcal{C}_{g}|} \right|, & \text{otherwise} \end{cases} \right)$$

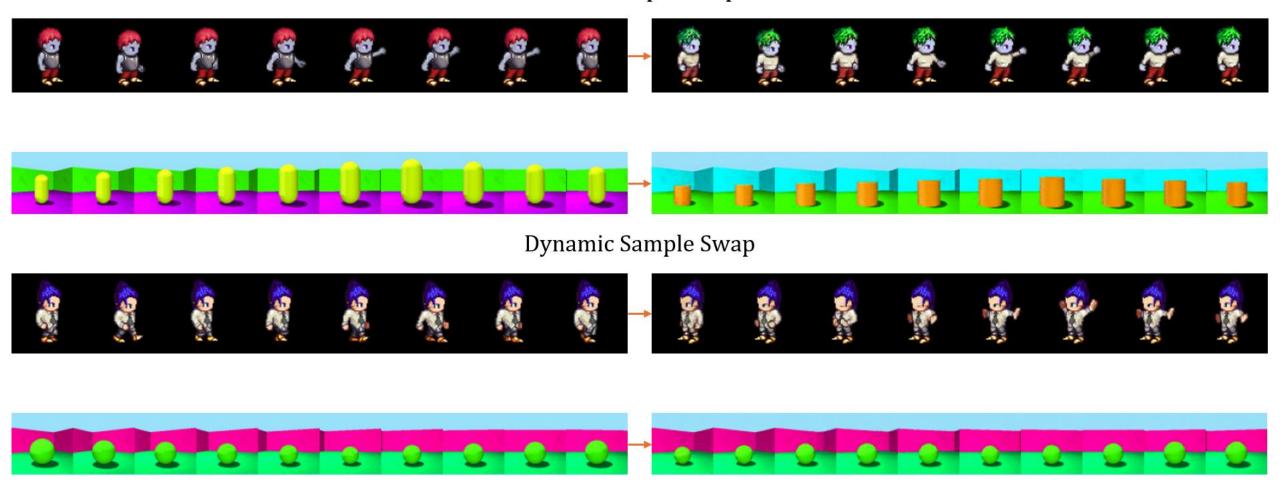
Static-Dynamic Disentanglement Results

Swap	Color	Shape	Scale	Position X	Position Y
	1			0.9827	0.9939
Dynamic	0.9976	0.4907	0.1301	0.1721	0.1605

Sprites	dSprites	Moving dSprites	3D Shapes
0.9872	0.9491	0.8699	0.9492

Static-Dynamic Disentanglement Results

Static Sample Swap



Multifactor Disentanglement Results

		_		Position X	
				0.1301	
Shape	0.18	0.4738	0.1268	0.1485	0.1465

Sprites	dSprites	Moving dSprites	3D Shapes
0.9836	0.9142	0.9348	0.971

Alternative Metrics

- Current metrics are non-sensitive to weak local performance.
 - All scores are close to 1, even in cases of weak performance.
 - The range of values between 0 and 1 is not used efficiently.
 - Uninformative.
- Measure distance between actual accuracy and target accuracy on a linear scale from 0 to 1.
- Use geometric mean instead of arithmetic mean.
- This was the original approach.
 - Replaced by current one for simplicity.

Discussion

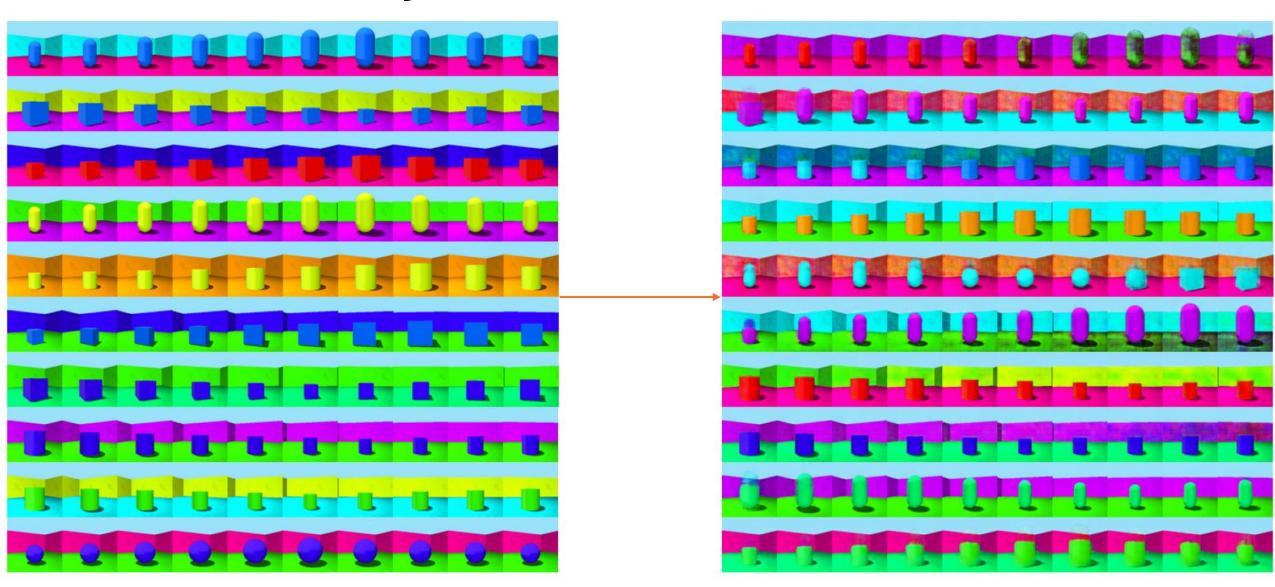
Comparison with SKD on Sprites

- Metrics:
 - Static-dynamic disentanglement:
 - SKD: 0.9981
 - SSM-SKD: 0.9872 (-0.0109)
 - Multifactor disentanglement:
 - SKD: 0.9276
 - SSM-SKD: 0.9836 (+0.056)
- Both models: ~2M parameters.
- Latent space size:
 - SKD: *K* = 40
 - SSM-SKD: *K* = 15 (2.667x smaller)

Limitations

- Theoretical gaps:
 - No formal justification for latent space extraction method.
- Dataset splits:
 - Model selection uses test data, risking overfitting.
- Inconsistency between frames:
 - Static factors may vary across frames.
 - Sequence-level classifiers overcome this during evaluation.
 - Need for frame-level evaluation metrics.
- Poor performance on dSprites variants:
 - Fails to disentangle shapes from dynamics, especially on Moving dSprites.

Inconsistency Between Frames



Future Work

- Multifactor disentanglement of dynamics:
 - Preliminary results on 3D Shapes show potential.
- Ablation study:
 - Compare SSM-SKD to SKD with new coordinate-based latent space extraction method across datasets.
- Explore using the shifted inverse power method for eigenvector approximation to introduce constraints on static latent representations.
- Establish robust datasets and metrics for sequential multifactor disentanglement benchmark.
- Study failure cases on dSprites variants.
- Explore sequential multifactor disentanglement in domains other than vision.

Questions?

Thank you!