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Introduction



Representation Learning

* Focuses on learning useful features directly from raw data.

e Aims to enhance downstream tasks like classification or
prediction.

* Creates a compact, meaningful latent space representation.



Sequential Disentanglement

* Disentangled representation:
* Features map to distinct, interpretable factors (e.g., shape, color, dynamics).
e Static and dynamic factorization.
* Aids generalization in machine learning tasks.

* Challenges:
* Limited labeled data.
* Need for unsupervised solutions.

e Structured Koopman Disentanglement (SKD) model:
* Autoencoder architecture.
* Uses Koopman theory and dynamic mode decomposition (DMD) in bottleneck.



Our Contributions

* |dentified and addressed issues in SKD implementation.

* Introduced Single Static Mode Structured Koopman
Disentanglement (SSM-SKD) model.

* Proposed a greedy latent space exploration algorithm.
 Evaluated SSM-SKD on four datasets and compared to SKD.

* Suggested a new standard for comprehensive environment
reporting to improve reproducibility.



Background



Koopman Theory and DMD

* Koopman theory:

* Provides a linear representation of nonlinear dynamical systems through
the Koopman operator.

* Operates in an infinite-dimensional space of observables, mapping
system measurements forward in time.

* Does not linearize the system but transforms its dynamics into a linear
framework for analysis.

* Focuses on the spectral properties of the operator, including
eigendecomposition, to analyze long-term behavior.



Koopman Theory and DMD

* DMD:

* A numerical algorithm that approximates the Koopman operator from
data.

* Analyzes snapshots of a system over time to compute a finite-
dimensional representation.

* |[dentifies dominant dynamic modes and their eigenvalues (frequencies,
growth/decay rates).

* Initially developed for fluid mechanics, it is widely used for high-
dimensional, time-dependent data.



Koopman Theory and DMD

* Relationship:

* Koopman theory is a theoretical framework for understanding nonlinear
dynamics via linear operators.

* DMD is a practical application that approximates the Koopman operator
from finite, observable data.

* Applications:

* Fluid mechanics, video processing, time-series analysis, and system
identification.

* Enable higher-level insights on the behavior of dynamical systems.
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Reimplementing SKD

e Motivation:

 Reproducing SKD results was hindered by multiple issues in the original
implementation.

* Dimension mismatch in architecture:
* Original implementation misused two dimension hyperparameters.
* Fixed by aligning code with Table 5 of the SKD paper.

* |[nconsistent size of subset S across batches:

* Usage of function get_unique_num() for delimiting static and dynamic eigenvalues
caused spectral loss instability.

* Resolved by consistently considering s eigenvalues closest to 1 as static-related,
regardless of conjugate pairing.

* NaN gradient issues:
* Training often failed (>= 40% of runs) due to NaN values in gradients.
* Addressed by applying gradient clipping for numerical stability.



Reimplementing SKD

* Precision in eigenvalue computations:
* Original implementation used lower precision operations.

* Upgraded to float64 for Koopman module and spectral loss calculation to
improve numerical stability.

* Learning rate scheduling:
* Original lacked a learning rate scheduler, leading to suboptimal convergence.
* Added a scheduler to decay learning rate on plateau.

* Hyperparameter discrepancies (Sprites dataset):
* Reported hyperparameters did not reproduce results.
* Adjusted.

* Impact:

* These corrections enhance SKD's reproducibility, stability, and
convergence, laying a robust foundation for further experimentation.



Single Static Mode Structured
Koopman Disentanglement

(SSM-SKD)



Motivation

* |In SKD, static modes are constrained to have eigenvalues ~1.

* SSM-SKD reduces all static modes to a single static mode with an
eigenvalue ~1.

e Potential benefits:

* Allows tighter constraints on static modes.
* Current deep learning software platforms do not support backpropagation through
eigenvectors due to numerical difficulties.
* |tis possible to approximate an eigenvector related to a real eigenvalue using a
backpropagation-friendly algorithm.
* Simplifies static mode representation and static disentanglement.

* Orthogonality in coordinates.



Architecture

* With s =1 (one static eigenvector), SKD faces the shortcut
problem (disentanglement-reconstruction tradeoff):

* Low K (Koopman operator size) values (K <= 8): Poor reconstruction
performance.

* High Kvalues: Poor static-dynamic disentanglement as the model
encodes static information in other modes (they have more capacity).

* Instance-wise Koopman operator approximation:

* Replace batch-level Koopman operator approximation with instance-level
approximation.

* Solve least squares problem for each instance.



Attribute Swapping in SKD

* Latent space extraction:
 SKD computes a latent space per batch.

* Koopman latent representation for instance:
* Zi x (desired eigenvector submatrix of the Koopman operator)

* Attribute swapping process:
* Multiply latent matrices by eigenvector matrix.
* Swap desired modes between instances in the resulting matrices.

* Multiply swapped matrices by the inverse of the eigenvector matrix to
obtain new latent matrices.

* Decode the modified latent matrices for swapped outputs.



Attribute Swapping in SSM-SKD

* Instance-wise Koopman operator approximation:

* Each instance has its own Koopman operator.
 SKD’s batch-based method is incompatible with SSM-SKD.

* New method:
 Compute static latent representation:
» Zi x (static mode submatrix of eigenvector matrix) x (submatrix of eigenvector inverse)
« Compute dynamic latent representation similarly with dynamic modes.
* Treat coordinates of static and dynamic representations as channels.
 Swap desired channels between instances.
 Sum static and dynamic representations, then decode.

* Lacks theoretical guarantees or justification.
* Contrary to SKD’s approach which is grounded on DMD.



Comparison
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Latent Space Exploration

e Which static modes relate to each factor?
 Partition of channels to factor sets.

* Train classifiers for static factors of the desired dataset.
» Sample instances from dataset and swap latent channels between them.
 SKD employs a brute-force search over the power set of static modes.

* We propose a greedy latent space exploration algorithm.
 Swap all channels except a single channel.
* Tie channel to the static factor for which accuracy is maximal.

* We prove that for our coordinate-based approach, it yields an optimal solution regarding
the sum of factor accuracies.

* Does not minimize leakage between factors.
* Leakage: Information about a factor being located in channels which are tied other factors.



Evaluation



Metrics
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Static-Dynamic Disentanglement Results

Swap Color Shape | Scale Position X Position Y

Static 0.1902 0.8488 | 0.8857 0.9827 0.9939
Dynamic | 0.9976 0.4907 | 0.1301 0.1721 0.1605

Sprites dSprites Moving dSprites 3D Shapes
0.9872  0.9491 0.8699 0.9492




Static-Dynamic Disentanglement Results

Static Sample Swap




Multifactor Disentanglement Results

Retain | Color Shape | Scale Position X Position Y

Color | 0.9845 0.3431 | 0.1043 0.1301 0.1315
Shape | 0.18 0.4738 | 0.1268 0.1485 0.1465

Sprites dSprites Moving dSprites 3D Shapes
0.9836 0.9142 0.9348 0.971




Alternative Metrics

* Current metrics are non-sensitive to weak local performance.
* All scores are close to 1, even in cases of weak performance.

* The range of values between 0 and 1 is not used efficiently.
* Uninformative.

* Measure distance between actual accuracy and target accuracy
on a linear scale from O to 1.

* Use geometric mean instead of arithmetic mean.

* This was the original approach.
* Replaced by current one for simplicity.



Discussion



Comparison with SKD on Sprites

e Metrics:

» Static-dynamic disentanglement:
* SKD: 0.9981
« SSM-SKD: 0.9872 (-0.0109)

* Multifactor disentanglement:
 SKD: 0.9276
« SSM-SKD: 0.9836 (+0.056)

* Both models: ~2M parameters.
* Latent space size:

« SKD: K=40

* SSM-SKD: K=15 (2.667x smaller)



Limitations

* Theoretical gaps:
* No formal justification for latent space extraction method.

* Dataset splits:
* Model selection uses test data, risking overfitting.

* |Inconsistency between frames:

» Static factors may vary across frames.
* Sequence-level classifiers overcome this during evaluation.

e Need for frame-level evaluation metrics.

* Poor performance on dSprites variants:

* Fails to disentangle shapes from dynamics, especially on Moving
dSprites.



Inconsistency Between Frames




Future Work

Multifactor disentanglement of dynamics:
* Preliminary results on 3D Shapes show potential.

Ablation study:

e Compare SSM-SKD to SKD with new coordinate-based latent space extraction method
across datasets.

Explore using the shifted inverse power method for eigenvector
approximation to introduce constraints on static latent representations.

Establish robust datasets and metrics for sequential multifactor
disentanglement benchmark.

* Study failure cases on dSprites variants.
* Explore sequential multifactor disentanglement in domains other than vision.



Questions?



Thank you!
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